Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 252: 121183, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301524

RESUMEN

In urban environments there is a severe reduction of infiltration and groundwater recharge due to the existence of large impervious areas. During rain events, large volumes of water that could have recharged groundwater and surface water bodies are diverted into the municipal drainage system and lost from the freshwater storage. Moreover, extreme rain events impose high peak flows and large runoff volumes, which increase the risk of urban floods. Recent studies have suggested the use of rainwater harvesting for groundwater recharge, as a plausible solution for these challenges in dense urban environments. While the benefits of this approach are well understood, research on its practical, engineering, and hydrological aspects is relatively limited. The objective of the present study was to examine the use of infiltration wells for groundwater recharge with harvested rainwater collected from building rooftops under Mediterranean climate conditions. Two types of wells with similar hydraulic and technical properties were examined: a well that reaches the groundwater (wet well); and a well that discharges the harvested water into the unsaturated zone (dry well). Infiltration capacities of the wells were compared in controlled experiments conducted during summer months, and in operational recharge of harvested rainwater, during winter. Both dry and wet wells were found to be suitable for purposes of groundwater recharge with rooftop-harvested rainwater. Infiltration capacity of the wet well was about seven times greater than the infiltration capacity of the dry well. While the infiltration capacity of the wet well was constant throughout the entire length of the study (∼10 m3/h/m), the dry well infiltration capacity improved during winter (from 0.5 m3/h/m to 1.5 m3/h/m), a result of development of the dry well with time. Considering Tel-Aviv, Israel, as a case study for a dense modern city in a Mediterranean climate, it is demonstrated herein that the use of infiltration wells may reduce urban drainage by ∼40 %.


Asunto(s)
Agua Subterránea , Pozos de Agua , Abastecimiento de Agua , Agua , Agua Dulce
2.
Environ Pollut ; 284: 117156, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33895571

RESUMEN

Groundwater contamination originating from anthropogenic industrial activities is a global concern, adversely impacting health of living organisms and affecting natural ecosystems. Monitoring contamination in a complex groundwater system is often limited by sparse data and poor hydrogeological delineation, so that numerous indicators (organic, inorganic, isotopic) are frequently used simultaneously to reduce uncertainty. We suggest that selected Technology-Critical Elements (TCEs), which are usually found in very low concentrations in the groundwater environment, might serve as contamination indicators that can be monitored through aquifer systems. Here, we demonstrate the use of selected TCEs (in particular, Y, Rh, Tl, Ga, and Ge) as indicators for monitoring anthropogenic groundwater contamination in two different groundwater systems, near the Dead Sea, Israel. Using these TCEs, we show that the sources of local groundwater contamination are phosphogypsum ponds located adjacent to fertilizer plants in two industrial areas. In addition, we monitored the spatial distribution of the contaminant plume to determine the extent of well and spring contamination in the region. Results show significant contamination of the groundwater beneath both fertilizer plants, leading to contamination of a series of wells and two natural springs. The water in these springs contains elevated concentrations of toxic metals; U and Tl levels, among others, are above the maximum concentration limits for drinking water.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Israel , Tecnología , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 128: 157-170, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29102695

RESUMEN

The Western Mountain Aquifer (Yarkon-Taninim) of Israel is one of the country's major water resources and partially flows through a karst system. During late winter 2013, maintenance actions were performed on a central sewage pipe that caused sewage to leak into the creek located in the study area. Carbamazepine (CBZ) was used as an indicator for the presence of sewage in the groundwater. The research goal was to develop a mathematical model for quantifying flow and contaminant transport processes in the karst/fractured-porous unsaturated zone and groundwater system. The model was used to simulate CBZ transport during and after an observed sewage leakage event. A quasi-3D dual permeability numerical model represents the 'vadose zone - aquifer' system, by a series of 1D vertical flow and transport equations solved in a variably-saturated zone and by 3D-saturated flow and transport equation in groundwater. The results of simulation showed that after the leakage stopped, significant amounts of CBZ were retained in the porous matrix of the unsaturated zone below the creek. Water redistribution and slow recharge during the dry summer season contributed to a continuous supply of CBZ to the groundwater in the vicinity of the creek and hundreds of meters downstream.


Asunto(s)
Carbamazepina/análisis , Agua Subterránea , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/análisis , Carbonatos , Biomarcadores Ambientales , Agua Subterránea/análisis , Agua Subterránea/química , Israel , Modelos Teóricos , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...